VMH-4824 Graph Network in High Energy Physics | Voxxed Days

Voxxed Days CERN 2019
on Wednesday 1 May

   Graph Network in High Energy Physics


Big Data & Machine Learning
Big Data & Machine Learning
Intermediate level
Main Auditorium Wednesday from 13:05 til 13:20

Collisions at the CERN Large Hadron Collider (LHC) produce showers of particles that are detected by heterogenous detectors composed of hundreds of millions of individual sensors, laid out under complex geometry. An event can be seen as a tree of detectable particles branching from the unstable particles (e.g., the Higgs boson) produced in the collisions. Once detected, events are collected as arrays of isolated hits, which are then collectively processed to reconstruct the trajectory and energy of the particles that created them. In this contribution, we describe how the reconstruction and identification of these particles can be performed using graph networks. Given their capability of learning sparse representations, graph networks are ideal tools to create a fixed-geometry representation of an event, abstracting from the irregular geometry of the detectors used at colliders. As a first processing step of raw data, they provide an interface between particle detection and more rigid deep learning techniques, e.g., convolutional neural networks.

Jean-Roch  Vlimant
Jean-Roch Vlimant

Physicist at the CMS Collaboration (Caltech)

Make sure to download the Android or iOS mobile schedule.